Integrating Social Network Structure into Online Feature Selection
نویسنده
چکیده
Short-texts accentuate the challenges posed by the high feature space dimensionality of text learning tasks. The linked nature of social data causes new dimensions to be added to the feature space, which, also becomes sparser. Thus, efficient and scalable online feature selection becomes a crucial requirement of numerous large-scale social applications. This thesis proposes an online feature selection technique for high-dimensional data based on both social and content-based information for the real-time classification of short-text streams coming from social media. The main objective of this thesis is to define and evaluate a new intelligent text mining technique for enhancing the process of knowledge discovery in social-media. This technique would help in the development of new and more effective models for personalisation and recommendation of content in social environments.
منابع مشابه
Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملFeature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm
This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the measure...
متن کاملA Modified Genetic based Neural Network Model for Online Character Recognition
Character Recognition has become an intensive research areas during the last few decades because of its potential applications. However, most existing classifiers used in recognizing handwritten online characters suffer from poor feature selection and slow convergence which affect training time and recognition accuracy. This paper proposed a methodology that is based on extraction of structural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016